Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Adicionar filtros

Tipo de documento
Intervalo de ano
1.
medrxiv; 2024.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2024.02.28.24303505

RESUMO

Background: For pathogens which cause infections that present asymptomatically, evaluating vaccine efficacy (VE) against asymptomatic infection is important for understanding a vaccine's potential epidemiological impact. Regular testing for subclinical infections is a potentially valuable strategy but its success hinges on participant adherence and minimising false positives. This paper describes the implementation and adherence to weekly testing in a COVID-19 vaccine trial. Methods: COV002 was a phase 2/3 trial assessing the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2. Asymptomatic infections were detected using weekly self-administered swabs for RT-PCR testing. We analysed adherence using mixed-effects regression models and estimated the probability of true and false positive asymptomatic infections using estimates of adherence and testing characteristics. Findings: 356,551 tests were self-administered by 10,811 participants during the 13-month follow-up. Median adherence was 75.0% (IQR 42.6-90.9), which translated to a 74.5% (IQR 50.9-78.8) probability of detecting a positive asymptomatic infection during the swabbing period, and between 21 and 96 false positives during VE evaluation. The odds of returning a swab declined by 8% per week and further after testing positive and unblinding. Adherence was higher in older age groups, females and non-healthcare workers. Interpretation The COV002 trial demonstrated the feasibility of running a long-term regular asymptomatic testing strategy. This information could be valuable for designing future phase III vaccine trials in which infection is an outcome. Funding UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, AstraZeneca.


Assuntos
COVID-19
2.
medrxiv; 2023.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2023.10.26.23297608

RESUMO

BackgroundUnderstanding underlying mechanisms of heterogeneity in test-seeking and reporting behaviour can help to protect the vulnerable and guide equity-driven interventions. Using COVID-19 testing data for England and data from community prevalence surveillance surveys (REACT-1 and ONS-CIS) from October 2020 to March 2022, we investigated the relationship between sociodemographic factors and testing behaviours in England. MethodsWe used mass testing data for lateral flow device (LFD; data for 290 million tests performed and reported) and polymerase chain reaction (PCR) (data for 107 million tests performed and returned from the laboratory) tests made available for the general public, provided by date, self-reported age and ethnicity at lower tier local authority (LTLA) level. Using a mechanistic causal model to debias the PCR testing data, we obtained estimates of weekly SARS-CoV-2 prevalence by self-reported ethnic groups and age groups for LTLAs in England. This approach to debiasing the PCR (or LFD) testing data also estimated a testing bias parameter defined as the odds of testing in infected versus not infected individuals, which would be close to zero if the likelihood of test seeking (or seeking and reporting) was the same regardless of infection status. Using confirmatory PCR data, we estimated false positivity rates, sensitivity, specificity, and the rate of decline in detection probability by PCR by sociodemographic groups. We also estimated the daily incidence allowing us to determine the fraction of cases captured by the testing programme. FindingsFrom March 2021 onwards, individuals in the most deprived regions reported approximately half as many LFD tests per-capita than those in the least deprived areas (Median ratio [Inter quartile range, IQR]: 0{middle dot}50 [0{middle dot}44, 0{middle dot}54]). During October 2020 - June 2021, PCR testing patterns were in the opposite direction (Median ratio [IQR]: 1{middle dot}8 [1{middle dot}7, 1{middle dot}9]). Infection prevalences in Asian or Asian British communities were considerably higher than those of other ethnic groups during the Alpha and Omicron BA.1 waves. Our estimates indicate that the England COVID-19 testing program detected 26% - 40% of all cases (including asymptomatic cases) over the study period with no consistent differences by deprivation levels or ethnic groups. PCR testing biases were generally higher than for LFDs, which was in line with the general policy of symptomatic and asymptomatic use of these tests. During the invasion phases of the Delta and Omicron variants of concern, the PCR testing bias in the most deprived populations was roughly double (ratio: 2{middle dot}2 and 2{middle dot}7 respectively) that in the least. We also determined that ethnic minorities and older individuals were less likely to use confirmatory PCR tests through most of the pandemic and that there was possibly a longer delay in reporting a positive LFD test in the Black populations. InterpretationDifferences in testing behaviours across sociodemographic groups may be reflective of the relatively higher costs of self-isolation to vulnerable populations, differences in test accessibility, digital literacy, and differing perception about the utility of tests and risks posed by infection. Our work shows how mass testing data can be used in conjunction with surveillance surveys to identify gaps in the uptake of public health interventions at fine scale levels and by sociodemographic groups. It provides a framework for monitoring local interventions and yields valuable lessons for policy makers in ensuring an equitable response to future pandemics. FundingUK Health Security Agency.


Assuntos
COVID-19
3.
medrxiv; 2023.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2023.08.19.23294311

RESUMO

Background: Data on SARS-CoV-2 infection in pregnancy and infancy has accumulated throughout the course of the pandemic. However, limited information is available from countries in sub-Saharan Africa (SSA). Evidence regarding asymptomatic SARS-CoV-2 infection and adverse birth outcomes are also scarce in these countries. The pregnant woman and infant COVID in Africa study (PeriCOVID Africa) is a South-South-North partnership involving hospitals and health centres in five countries: Malawi, Uganda, Mozambique, The Gambia, and Kenya. The study leveraged data from three ongoing prospective cohort studies: Preparing for Group B Streptococcal Vaccines (GBS PREPARE), SARS-CoV-2 infection and COVID-19 in women and their infants in Kampala and Mukono (COMAC) and Pregnancy Care Integrating Translational Science Everywhere (PRECISE). In this paper we describe the seroepidemiology of SARS-CoV-2 infection in pregnant women enrolled in sites in Uganda and Malawi, and the impact of SARS-CoV-2 infection on pregnancy and infant outcomes. Methods: The PeriCOVID study is a prospective mother-infant cohort study that recruited pregnant women at any gestation antenatally or on the day of delivery. A nasopharyngeal swab was taken from mothers at enrolment for RT-PCR confirmation of SARS-CoV-2 infection, and maternal and cord blood samples were tested for SARS-CoV-2 antibodies using Wantai and Euroimmune ELISA. The primary outcome was seroprevalence of SARS-CoV-2 antibodies in maternal blood, reported as the proportion of seropositive women by study site and wave of COVID-19 within each country. Placental transfer of antibodies was described using the geometric mean ratio (GMR). We also estimated the proportion of asymptomatic or subclinical COVID-19 infections in pregnant women using serological testing, and collected adverse pregnancy and infancy outcomes (e.g. still-birth, prematurity, maternal or infant death). Results: In total, 1379 women were enrolled, giving birth to 1387 infants. Overall, 63% of pregnant women had a SARS-CoV-2 positive serology. Over subsequent waves (delta and omicron) , in the absence of vaccination, seropositivity rose from 20% to over 80%. The placental transfer GMR was 1.7, indicating active placental transfer of anti-spike IgG. There was no association between SARS-CoV-2 antibody positivity and adverse pregnancy or infancy outcomes. Discussion: This study describes the increasing prevalence of SARS CoV-2 antibodies in pregnant woman in Uganda and Malawi across waves of SARS-CoV-2 infection. Our study adds to existing evidence that suggests under-reporting of infection if based solely on cases with clinical disease, or a positive RT-PCR for SARS-CoV-2, as most of the women in our study had asymptomatic infections and did not seek medical care. This has implications for screening in subsequent outbreaks and pandemics where protection of pregnant women and effect of infection in pregnancy on the infant are unknown.


Assuntos
COVID-19 , Morte
4.
medrxiv; 2023.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2023.03.02.23286698

RESUMO

Vaccines can provide protection against infection or reduce disease progression and severity. Vaccine efficacy (VE) is typically evaluated independently for different outcomes, but this can cause biased estimates of VE. We propose a new analytical framework based on a model of disease progression for VE estimation for infections with multiple possible outcomes of infection: Joint analysis of multiple outcomes in vaccine efficacy trials (JAMOVET). JAMOVET is a Bayesian hierarchical regression model that controls for biases and can evaluate covariates for VE, the risk of infection, and the probability of progression. We applied JAMOVET to simulated data, and data from COV002 (NCT04400838), a phase 2/3 trial of ChAdOx1 nCoV-19 (AZD1222) vaccine. Simulations showed that biases are corrected by explicitly modelling disease progression and imperfect test characteristics. JAMOVET estimated ChAdOx1 nCoV-19 VE against infection (VEin) at 47% (95% CI 36-56) and progression to symptoms (VEpr) at 48% (95% CI 32-61). This implies a VE against symptomatic infection of 72% (95% CI 63-80), consistent with published trial estimates. VEin decreased with age while VEpr increased with age. JAMOVET is a powerful tool for evaluating diseases with multiple dependent outcomes and can be used to adjust for biases and identify predictors of key outcomes.


Assuntos
COVID-19
5.
medrxiv; 2022.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2022.10.27.22281604

RESUMO

Introduction: In 2020, the UK Health Security Agency (UKHSA) established a large-scale testing programme to rapidly identify individuals in England who were infected with SARS-CoV-2 and had COVID-19. This comprised part of the UK government's COVID-19 response strategy, to protect those at risk of severe COVID-19 disease and death and to reduce the burden on the health system. To assess the success of this approach, UKHSA commissioned an independent evaluation of the activities delivered by the NHS testing programme in England. The primary purpose of this evaluation is to capture key learnings from the rollout of testing to different target populations via various testing services between October 2020 and March 2022 and to use these insights to formulate recommendations for future pandemic preparedness strategy. Methods and analysis: The proposed study involves a stepwise mixed-methods approach, aligned with established methods for the evaluation of complex interventions in health, with retrospective and prospective components. A bottom-up approach will be taken, focusing on each of nine population-specific service settings. We will use a Theory of Change to understand the causal pathways and intended and unintended outcomes of each service, also exploring the effect of context on each individual service setting's intended outcomes. Subsequently, the insights gained will be synthesised to identify process and outcome indicators to evaluate how the combined aims of the testing programme were achieved. A forward-looking, prospective component of this work will aim to inform testing strategy in preparation for future pandemics, through a participatory modelling simulation and policy analysis exercise. Disclaimer: This is a provisional draft protocol that represents research in progress. This research was commissioned and funded by UKHSA, to be performed between August 2022 and March 2023. The scope and depth of testing services and channels covered by this research were pre-agreed with UKHSA and are limited to the availability and provision of data available at the time this protocol was written.


Assuntos
COVID-19 , Morte
6.
ssrn; 2021.
Preprint em Inglês | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3873839

RESUMO

Background: COVID-19 vaccine supply shortages are causing concerns about compromised immunity in some countries as the interval between first and second dose extends. Conversely, countries with no supply constraints are considering administering a third dose. We assessed the persistence of immunogenicity after a single dose, the immunity after an extended interval between the first and second dose of ChAdOx1 nCoV-19(AZD1222), and the response to a third dose as a late booster. Methods: Volunteers aged 18-55 years who were enrolled in a Phase 1/2 or Phase 2/3 clinical trial of ChAdOx1 nCoV-19 and had received either a single dose or two doses of 5×10 10 viral particles were invited back for vaccination. Reactogenicity and immunogenicity of a delayed second dose or a third dose are reported here.Findings: Antibody titres after a single dose and measured on d362 remain higher than the titres measured on d0 (62.61 EU; 95% CI 47.43-82.64 vs 1 EU 95% CI 1-16). 30 participants received a late second dose of ChAdOx1 nCoV-19 (median 44 weeks after first dose), antibody titres were higher in those with a longer interval between first and second dose (median EU for 8-12, 15-25, and 44-46 weeks were 923 [IQR 525-1764], 1860 [IQR 917-4934] and 3738 [IQR 1824-6625] respectively). 90 participants received a third dose and antibody titres were significantly higher following a third dose (FRNT50 612 [IQR 351-920]) when compared with the response 28 days after a second dose (FRNT 50 319 [IQR 176-591]. T-cell responses were also boosted after a third dose. Reactogenicity after a late second dose or a third dose was lower than reactogenicity after a first dose.Interpretation: A longer delay before the second dose of ChAdOx1 nCoV-19 leads to an increased antibody titre after the second dose. A third dose of ChAdOx1 nCoV-19 induces antibodies to a level that correlate with high efficacy after second dose and boosts T-cell responses.Funding: UK Research and Innovation (MC_PC_19055), Engineering and Physical Sciences Research Council (EP/R013756/1), National Institute for Health Research (COV19 OxfordVacc-01), Coalition for Epidemic Preparedness Innovations (Outbreak Response To Novel Coronavirus (COVID-19)), National Institute for Health Research Oxford Biomedical Research Centre (BRC4 Vaccines Theme), Thames Valley and South Midland’s NIHR Clinical Research Network, and AstraZeneca. The views expressed in this publication are those of the authors and not necessarily those of the NIHR or the UK Department of Health and Social Care.Declaration of Interest: Oxford University has entered into a partnership with AstraZeneca for further development of ChAdOx1 nCoV-19. AstraZeneca reviewed the data from the study and the final manuscript before submission, but the authors retained editorial control. SCG and AVSH are cofounders of and shareholders in Vaccitech (collaborators in the early development of this vaccine candidate) and named as inventors on a patent covering use of ChAdOx1-vectored vaccines (PCT/GB2012/000467) and a patent application covering this SARS-CoV-2 vaccine (SCG only). TL is named as an inventor on a patent covering use of ChAdOx1-vectored vaccines (PCT/GB2012/000467) and was a consultant to Vaccitech. PMF is a consultant to Vaccitech. AJP is Chair of the UK Department of Health and Social Care’s JCVI, but does not participate in policy advice on coronavirus vaccines, and is a member of the WHO Strategic Advisory Group of Experts (SAGE). AJP is a NIHR Senior Investigator.Ethical Approval: In the UK, the COV001 and COV002 studies were approved by the South Central Berkshire Research Ethics Committee (COV001 reference 20/SC/0145, March 23, 2020; and COV002 reference 20/SC/0179; conditional approval April 8, full approval April 19, 2020).


Assuntos
COVID-19
7.
medrxiv; 2021.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2021.06.21.21258528

RESUMO

Background: Although 6 COVID-19 vaccines have been approved by the World Health Organisation as of 7th June 2021, global supply remains limited. An understanding of the immune response associated with protection could facilitate rapid licensure of new vaccines. Methods: Data from a randomised efficacy trial of ChAdOx1 nCoV-19 (AZD1222) vaccine in the UK was analysed to determine the antibody levels associated with protection against SARS-CoV-2. Anti-spike and anti-RBD IgG by multiplex immunoassay, pseudovirus and live neutralizing antibody at 28 days after the second dose were measured in infected and non-infected vaccine recipients. Weighted generalised additive models for binary data were applied to outcome. Cubic spline smoothed log antibody levels, and baseline risk of exposure were the predictor variables with weights applied to account for selection bias in sample processing. Results: Higher levels of all immune markers were correlated with a reduced risk of symptomatic infection. Vaccine efficacy of 80% against primary symptomatic COVID-19 was achieved with antibody level of 40923 (95% CI: 16748, 125017) and 63383 (95% CI: 16903, not computed (NC)) for anti-spike and anti-RBD, and 185 (95% CI: NC, NC) and 247 (95% CI: 101, NC) for pseudo- and live-neutralisation assays respectively. Antibody responses did not correlate with overall protection against asymptomatic infection. Conclusions: Correlates of protection can be used to bridge to new populations using validated assays. The data can be used to extrapolate efficacy estimates for new vaccines where large efficacy trials cannot be conducted. More work is needed to assess correlates for emerging variants.


Assuntos
COVID-19
8.
researchsquare; 2021.
Preprint em Inglês | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-654257.v1

RESUMO

Background Emerging evidence shows the substantial real-world impact of authorised vaccines against COVID-19 and provides insight into the potential role of vaccines in curbing the pandemic. However, there remains uncertainty about the efficacy of vaccines against different variants of the virus. Here we assessed efficacy of ChAdOx1 nCoV-19 (AZD1222) against lineages of SARS-CoV-2 circulating in Brazil from June 2020 until early 2021. Methods Participants aged 18 and above were enrolled into a randomised phase 3 trial of ChAdOx1 nCoV-19 vaccine against symptomatic SARS-CoV-2 infection. Participants received two doses of ChAdOx1 nCoV-19 or control (1st dose: Men ACWY vaccine, 2nd dose: normal saline). Nasopharyngeal and oropharyngeal swabbing was performed if participants developed symptoms of COVID-19 (cough, shortness of breath, fever >37.8°C, ageusia, anosmia). Swabs were tested by nucleic acid amplification (NAAT) for SARS-CoV-2, sequenced, and viral load determined. For those samples where a genotype could not be ascertained from sequencing, allele specific PCR was performed. The efficacy analysis included symptomatic COVID-19 in seronegative participants with a NAAT positive swab more than 14 days after a second dose of vaccine. Participants were unblinded after the vaccine was authorised for use, and the control participants offered vaccination. Infections occurring after unblinding were excluded from analysis. Vaccine efficacy was calculated as 100% x (1 – relative risk (RR)), where RR was estimated from a robust Poisson model. The trial is registered at ISRCTN89951424. Findings 9433 participants were eligible for inclusion in the pre-specified primary efficacy population, having reached more than 14 days after a second dose of ChAdOx1 nCoV-19, of whom 307 were NAAT+, in this post-hoc analysis. From June 2020 to February 2021, the two most frequently identified lineages were P.2 (N=153) and B.1.1.28 (N=49). P.1 emerged during the study (N=18) but became dominant only after study unblinding. Viral loads were highest amongst those with P.1 infection. Vaccine efficacy (VE) for B.1.1.33 (88.2%, 95%CI 5, 99), B.1.1.28 (73%, 95% CI, 46, 86), P.2 (69% 95% CI, 55, 78) and P.1 (64%, 95% CI, -2, 87) was estimated. In participants who had received two doses of vaccine, one COVID-19 hospitalisation occurred in the ChAdOx1 nCoV-19 group and 18 in the control group, with VE against hospitalisation 95% (95% CI 61, 99). There were 2 COVID-19 deaths in the control group and none in the vaccine group. Interpretation ChAdOx1 nCoV-19 provides high efficacy against hospitalisation, severe disease and death from COVID-19 in Brazil and there is strong evidence of protection being maintained against P.2, despite the presence of the spike protein mutation E484K. Real world effectiveness studies are ongoing in Brazil to further establish protection against P.1 and other emerging variants.


Assuntos
Dispneia , Febre , Transtornos do Olfato , Morte , COVID-19 , Ageusia
9.
ssrn; 2021.
Preprint em Inglês | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3829931

RESUMO

Background: The ChAdOx1 nCoV-19 (AZD1222) vaccine is immunogenic and protects against COVID-19. However, data on vaccine immunogenicity are needed for the 40 million people living with HIV (PWH), who may have less functional immunity and more associated co-morbidities than the general population. Methods: Between the 5th and 24th November 2020, 54 adults with HIV, aged 18-55 years, were enrolled into a single arm open label vaccination study within the protocol of the larger phase 2/3 COV002 trial. A prime-boost regimen of ChAdOx1 nCoV-19, with two doses (5 × 1010 vp) was given 4-6 weeks apart. All participants were on antiretroviral therapy (ART) with undetectable plasma HIV viral loads and CD4+ T cell counts >350 cells/µl at enrolment. Data were captured on adverse events. Humoral responses were measured by anti-spike IgG ELISA and antibody-mediated live virus neutralisation. Cell-mediated immune responses were measured by ex-vivo interferon-γ enzyme-linked immunospot assay (ELISpot) and T cell proliferation. All outcomes were compared with a HIV uninfected group from the main COV002 study.Findings: 54 participants with HIV (median age 42.5 years (IQR 37.2-49.8)) received two doses of ChAdOx1 nCoV-19. Median CD4+ T cell count at enrolment was 694 cells/µl (IQR 562-864). Results are reported for 56 days of follow-up. Local and systemic reactions occurring during the first 7 days after prime vaccination included pain at the injection site (49%), fatigue (47%), headache (47%), malaise (34%), chills (23%), and muscle or (36%) joint pain (9%), the frequencies of which were similar to the HIV-negative participants. There were no serious adverse events. Anti-spike IgG responses by ELISA peaked at Day 42 (median 1440 ELISA units, IQR 704-2728) and were sustained out to Day 56. There was no correlation with CD4+ T cell count or age and the magnitude of the anti-spike IgG response at Day 56 (P>0.05 for both). ELISpot and T cell proliferative responses peaked between Day 14 and 28 after prime and were sustained through to Day 56. When compared to participants without HIV there was no statistical difference in magnitude or persistence of SARS-CoV-2 spike-specific humoral or cellular responses (P>0.05 for all analyses).Interpretation: In this study of PWH, vaccination with ChAdOx1 nCoV-19 was well tolerated and there was no difference in humoral and cell-mediated immune responses compared to an adult cohort without HIV who received the same vaccination regime. Trial Registration: Trial Registration number is NCT04400838. Funding: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midlands NIHR Clinical Research Network, and AstraZeneca. The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care.Declaration of Interest: Oxford University has entered into a partnership with AstraZeneca for further development of ChAdOx1 nCoV-19 (AZD1222). AstraZeneca reviewed the data from the study and the final manuscript before 474 submission, but the authors retained editorial control. SCG is cofounder of Vaccitech (a collaborator in the early development of this vaccine candidate) and named as an inventor on a patent covering use of ChAdOx1-vectored vaccines (PCT/GB2012/000467) and a patent application covering this SARS-CoV-2 vaccine. TL is named as an inventor on a patent application covering this SARS-CoV-2 vaccine and was consultant to Vaccitech. PMF is a consultant to Vaccitech. AJP is Chair of the UK Department of Health and Social Care’s JCVI, but does not participate in policy advice on coronavirus vaccines, and is a member of the WHO Strategic Advisory Group of Experts (SAGE). AVSH is a cofounder of and consultant to Vaccitech and is named as an inventor on a patent covering design and use of ChAdOx1-vectored vaccines (PCT/GB2012/000467).Ethical Approval: Written informed consent was obtained from all participants, and the trial was done in accordance with the principles of the Declaration of Helsinki and Good Clinical Practice. This study was approved in the UK by the Medicines and Healthcare products Regulatory Agency (reference 21584/0424/001-0001) and the South Central Berkshire Research Ethics Committee (reference 20/SC/0145). Vaccine use was authorised by Genetically Modified Organisms Safety Committees at each participating site.


Assuntos
Infecções por HIV , COVID-19 , Doença da Hemoglobina SC
10.
researchsquare; 2021.
Preprint em Inglês | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-322470.v1

RESUMO

Coronavirus disease 2019 (COVID-19) is a public health emergency of international concern1. People living with HIV (PLWH) are at increased risk for adverse COVID-19 outcomes compared with HIV-negative individuals2-5, and are a high-risk group for COVID-19 prevention4. The ChAdOx1 nCoV-19 (AZD1222) vaccine has demonstrated safety and efficacy against COVID-19 in clinical trials6-8. To date, there are no reports on the safety and immunogenicity of this, or any COVID-19 vaccine, in PLWH, and reports on the immunogenicity of COVID-19 vaccines in Africa are limited9. Here, we show comparable safety and immunogenicity of two doses of ChAdOx1 nCoV-19 between PLWH and HIV-negative individuals in South Africa. Furthermore, in PLWH previously exposed to SARS-CoV-2, antibody responses increased substantially from baseline following a priming dose, with modest increases after a booster dose. Full-length spike and receptor-binding domain IgG geometric mean concentrations after a single dose of ChAdOx1 nCoV-19 in PLWH previously exposed to SARS-CoV-2 were 6.49–6.84-fold higher than after two doses in those who were SARS-CoV-2 naïve at enrollment. Neutralizing antibody responses were consistent with the antibody-binding responses. This is the first report of a COVID-19 vaccine specific to PLWH, and specific to Africa, and demonstrates favorable safety and immunogenicity of ChAdOx1 nCoV-19 in PLWH.


Assuntos
Infecções por Coronavirus , Infecções por HIV , COVID-19
11.
researchsquare; 2021.
Preprint em Inglês | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-296726.v1

RESUMO

Background The ongoing COVID-19 pandemic has placed an unprecedented health and economic burden on countries at all levels of socioeconomic development, emphasizing the need to evaluate the most effective vaccination strategy in multiple, diverse environments. The high reported efficacy, low cost, and long shelf-life of the ChAdOx1 nCoV-19 vaccine positions it well for evaluation in different settings. Methods Using data from the ongoing ChAdOx1 nCoV-19 clinical trials, an individual-based model was constructed to predict the 6-month population-level impact of vaccine deployment. A detailed probabilistic sensitivity analysis (PSA) was developed to evaluate the importance of epidemiological, demographic, immunological, and logistical factors in determining vaccine effectiveness. Using representative countries, logistical plans for vaccination rollout at various levels of vaccine availability and delivery speed, conditional on vaccine efficacy profiles (efficacy of the booster dose, time interval between doses, and relative efficacy of the first dose) were explored.Findings and Interpretation Our results highlight how expedient vaccine delivery to high-risk groups is critical in mitigating COVID-19 disease and mortality. In scenarios where the number of vaccine doses available is insufficient for high-risk groups (those aged more than 65 years) to receive two vaccine doses, administration of a single dose of vaccine is optimal. This effect is consistent even when vaccine efficacy after one dose is just 75% of the levels achieved after two doses. These findings offer a nuanced perspective of the critical drivers of COVID-19 vaccination effectiveness and can inform optimal allocation strategies. These are relevant to high-income countries with a large high-risk group population as well as to low-income countries with younger populations, where the cost and logistical challenges of procuring and delivering two doses for each citizen represent a significant challenge.


Assuntos
COVID-19
13.
ssrn; 2021.
Preprint em Inglês | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3777268

RESUMO

Background: The ChAdOx1 nCoV-19 (AZD1222) vaccine has been approved for emergency use by the UK regulatory authority, MHRA, with a regimen of two standard doses given with an interval of between 4 and 12 weeks. The planned rollout in the UK will involve vaccinating people in high risk categories with their first dose immediately, and delivering the second dose 12 weeks later.Here we provide both a further prespecified pooled analysis of trials of ChAdOx1 nCoV-19 and exploratory analyses of the impact on immunogenicity and efficacy of extending the interval between priming and booster doses. In addition, we show the immunogenicity and protection afforded by the first dose, before a booster dose has been offered.Methods: We present data from phase III efficacy trials of ChAdOx1 nCoV-19 in the United Kingdom and Brazil, and phase I/II clinical trials in the UK and South Africa, against symptomatic disease caused by SARS-CoV-2. The data cut-off date for these analyses was 7th December 2020. The accumulated cases of COVID-19 disease at this cut-off date exceeds the number required for a pre-specified final analysis, which is also presented. As previously described, individuals over 18 years of age were randomised 1:1 to receive two standard doses (SD) of ChAdOx1 nCoV-19 (5x1010 viral particles) or a control vaccine/saline placebo. In the UK trial efficacy cohort a subset of participants received a lower dose (LD, 2.2x1010 viral particles) of the ChAdOx1 nCoV-19 for the first dose. All cases with a nucleic acid amplification test (NAAT) were adjudicated for inclusion in the analysis, by a blinded independent endpoint review committee. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov; NCT04324606, NCT04400838, and NCT04444674.Findings: 17,177 baseline seronegative trial participants were eligible for inclusion in the efficacy analysis, 8948 in the UK, 6753 in Brazil and 1476 in South Africa, with 619 documented NAAT +ve infections of which 332 met the primary endpoint of symptomatic infection >14 days post dose 2.The primary analysis of overall vaccine efficacy >14 days after the second dose including LD/SD and SD/SD groups, based on the prespecified criteria was 66.7% (57.4%, 74.0%). There were no hospitalisations in the ChAdOx1 nCoV-19 group after the initial 21 day exclusion period, and 15 in the control group.Vaccine efficacy after a single standard dose of vaccine from day 22 to day 90 post vaccination was 76% (59%, 86%), and modelled analysis indicated that protection did not wane during this initial 3 month period. Similarly, antibody levels were maintained during this period with minimal waning by day 90 day (GMR 0.66, 95% CI 0.59, 0.74).In the SD/SD group, after the second dose, efficacy was higher with a longer prime-boost interval: VE 82.4% 95%CI 62.7%, 91.7% at 12+ weeks, compared with VE 54.9%, 95%CI 32.7%, 69.7% at <6 weeks. These observations are supported by immunogenicity data which showed binding antibody responses more than 2-fold higher after an interval of 12 or more weeks compared with and interval of less than 6 weeks GMR 2.19 (2.12, 2.26) in those who were 18-55 years of age.Interpretation: ChAdOx1 nCoV-19 vaccination programmes aimed at vaccinating a large proportion of the population with a single dose, with a second dose given after a 3 month period is an effective strategy for reducing disease, and may be the optimal for rollout of a pandemic vaccine when supplies are limited in the short term.Trial Registration: Studies are registered at ISRCTN89951424 and ClinicalTrials.gov; NCT04324606, NCT04400838, and NCT04444674.Funding: UKRI, NIHR, CEPI, the Bill & Melinda Gates Foundation, the Lemann Foundation, Rede D’OR, the Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and Astra Zeneca.Conflict of Interest: Oxford University has entered into a partnership with Astra Zeneca for further development of ChAdOx1 nCoV-19. SCG is co-founder of Vaccitech (collaborators in the early development of this vaccine candidate) and named as an inventor on a patent covering use of ChAdOx1-vectored vaccines and a patent application covering this SARS-CoV-2 vaccine. TL is named as aninventor on a patent application covering this SARS-CoV-2 vaccine and was a consultant to Vaccitech for an unrelated project. PMF is a consultant to Vaccitech. AJP is Chair of UK Dept.Health and Social Care’s (DHSC) Joint Committee on Vaccination & Immunisation (JCVI), but does not participate in discussions on COVID-19 vaccines, and is a member of the WHO’sSAGE. AJP and SNF are NIHR Senior Investigator. The views expressed in this article do not necessarily represent the views of DHSC, JCVI, NIHR or WHO. AVSH reports personal feesfrom Vaccitech, outside the submitted work and has a patent on ChAdOx1 licensed to Vaccitech, and may benefit from royalty income to the University of Oxford from sales of this vaccine by AstraZeneca and sublicensees. MS reports grants from NIHR, non-financial support fromAstraZeneca, during the conduct of the study; grants from Janssen, grants fromGlaxoSmithKline, grants from Medimmune, grants from Novavax, grants and non-financialsupport from Pfizer, grants from MCM, outside the submitted work. CG reports personal fees from the Duke Human Vaccine Institute, outside of the submitted work. SNF reports grants from Janssen and Valneva, outside the submitted work. ADD reports grants and personal fees from AstraZeneca, outside of the submitted work. In addition, ADD has a patent manufacturingprocess for ChAdOx vectors with royalties paid to AstraZeneca, and a patent ChAdOx2 vector with royalties paid to AstraZeneca. The other authors declare no competing interests.


Assuntos
COVID-19 , Hepatite D
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA